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Abstract. Drying induced shrinkage is often attributed to two major
mechanisms- capillary pressure in the bulk pore solution and disjoining
pressure in the liquid film separating the vapor phase from the pore
wall or separating solid surfaces in nanometric pores. There is suffi-
cient ambiguity in literature regarding the relative contribution of these
two mechanisms, as well as the means to quantify their contributions.
The objective of this manuscript is to evaluate the contribution of dis-
joining pressure in the drying shrinkage of cementitious materials. An
unconventional approach to determining disjoining pressure within
the framework of continuum mechanics is presented. This approach
utilizes the conservation of linear momentum to derive a generalized
expression of the disjoining pressure from the Lorentz force vector.
The expression suggests that disjoining pressure is essentially an os-
motic pressure at the contact surfaces that counters the electrostatic
contribution to linear momentum. The proposed theory accurately
predicts measurements of osmotic pressure found in the literature for
the swelling of charged bilayers in a dilute salt solution. Applied to the
shrinkage problem, the theory suggests that shrinkage stress is induced
by the reduction in the potential gradient between the liquid film and
bulk solution from the reference (fully saturated) state. The reduction
in the potential gradient is caused by an increase in the concentration
of the solutes in the pore solution when liquid water is removed as the
relative humidity decreases.
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1. Introduction
Drying shrinkage is the volumetric contraction associated
with the removal of water from the pore network of a porous
body. When concrete is subject to drying, it can exhibit
substantial cracking compromising its strength and dura-
bility. It is essential to understand mechanisms that drive
drying shrinkage so that mitigation techniques to shrinkage
induced damage can be developed. Once the drying process
starts, the pore space consists of the bulk liquid and vapor
space separated from the pore wall by a thin liquid film.
Mechanisms that drive shrinkage in cementitious materials
are generally attributed to capillary pressure in the bulk
liquid and disjoining pressure in the thin liquid film sep-
arating the vapor phase from the pore wall or separating
solid surfaces in nanometric pores. The concept of capillary
pressure was first presented by Young [1805] and formulated
by Laplace [1805] as

pv −p l = 2γ

r
, (1)

where pv is the vapor pressure, p l is the liquid pressure, γ
is the liquid-vapor surface tension, and r is the mean curva-
ture of a liquid-vapor interface. Thomson [1871] (also known
as Lord Kelvin) later demonstrated that the vapor pressure is
suppressed above a curved liquid-vapor interface such that

2γ

r
=−ρ

l RT

mv ln(RH) , (2)

where ρl is the density of the liquid water, mv is the molar
mass of water, R is the ideal gas constant, RH = pv /pv−sat is
the relative humidity of the vapor, where pv−sat is the satu-
rated vapor pressure, and T is the temperature. The com-
bination of equations 1 and 2 yields the so-called Kelvin-
Laplace equation according to

pv −p l =−ρ
l RT

mv ln(RH) , (3)

which relates the suppression of the vapor pressure to
the pressure difference between the liquid and gaseous
phases. Equation 3 is an important expression that has been
utilized to model the drying shrinkage of cementitious ma-
terials. This equation may be readily modified to account
for the presence of dissolved species, which is significant in
pores of hydrated cement paste [Coussy, 2010a, Grasley and
Leung, 2011].

Since equation 1 is derived by enforcing conservation
of linear momentum across a stable curved interface sep-
arating the liquid and vapor phase, and existence of such
a stable meniscus in single nanometer sized pores has
been debated [Christenson, 1985, 1988, Fisher et al., 1981,
Fisher and Israelachvili, 1981a,b, Yang et al., 2020]., Beltzung
and Wittmann [2005] question the importance of equation
3 for concrete and argue that capillary pressure is not a
primary mechanism for drying shrinkage. Beltzung and
Wittmann [2005] instead emphasize that only disjoining
pressure is relevant in mature cement paste as most water
is in pore space a few nanometers in diameter. Beltzung
and Wittmann [2005] present the interaction of adsorbed
and capillary condensed water in a narrow gap between

a thin quartz plate and a supporting block as evidence
that disjoining pressure is the dominant mechanism in the
swelling of nanoporous materials. They show that as the
relative humidity increases more than 55%, condensation
occurs between the plates and the block and the separation
between the solids increases. They argue that during des-
iccation structured water (adsorbed water films that cover
cement hydrate surfaces) evaporates, disjoining pressure
decreases, due to attractive forces surfaces come closer,
and shrinkage occurs. The study also notes that dissolved
ions contribute considerably to disjoining pressure by the
hydration of ions or building up of electrical double layers.
Several other studies investigating disjoining pressure with
surface force apparatuses show that bulk concentrations of
the dissolved ions have a pronounced influence on disjoin-
ing pressure [Churaev et al., 2000, Pashley, 1981a,b, Pashley
and Quirk, 1984, Plassard et al., 2005].

Based on the work of Neimark et al. [2003] and Gor and
Neimark [2010], Scherer [2015] stated that disjoining pres-
sure is additive to the pressure given by equation 2 and can
be combined together to express the capillary pressure,Pc ,
as

Pc =π (δ)+ 2γ

r −δ =−ρ
l RT

mv ln(RH) , (4)

where π is the disjoining pressure and a function of the
thickness, δ, of the adsorbed layer of the liquid on the solid
surface.

In a recent article, Rahman and Grasley [2017] showed
that the disjoining pressure in a flat liquid film separating
the vapor phase from the pore wall is in mechanical equilib-
rium with the vapor pressure and does not need to be con-
sidered separately (beyond the capillary pressure given in
equation 3) for modeling drying shrinkage in the context of
poroelastic deformation. This finding is in agreement with
Derjaguin et al. [1987] who noted that the pressure within
a thin liquid film separating a solid and vapor is expressed
fully by equation 3, which unfortunately has also been re-
ferred to as disjoining pressure in [Derjaguin et al., 1987].
Furthermore, as far back as 1901, Lewis [1901] demonstrated
that expressions like that in equation 3 may be derived with-
out any presumption about the existence of a meniscus be-
tween the vapor and liquid phases.

Rahman and Grasley [2017] specifically derived equation
3 from conservation of energy principles via a Gibbs-Duhem
type state equation to demonstrate that the capillary pres-
sure expressed by equation 3 does not require presence of
a meniscus. The implication is that equation 3 is applicable
to shrinkage stress generated across the full range of rela-
tive humidity – not simply at levels where a defined capil-
lary meniscus is present – and there is no additional disjoin-
ing pressure in the thin water film between solid particles
and the vapor phase contributing to shrinkage. The expla-
nation of the concrete shrinkage mechanism whereby solid
surfaces separated by a thin liquid film come closer with de-
creasing disjoining pressure is also dubious as the pore size
does not change considerably with respect to the reference
state (unlike with clays, the change in pore sizes of concrete
due to shrinkage strain is negligible). The question naturally
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arises, then, as to whether disjoining pressure changes con-
tribute to shrinkage at all. The ambiguous understanding
of the contribution of disjoining pressure changes warrants
reevaluation of the mechanisms driving drying shrinkage.
The objective of this paper is to carefully evaluate disjoining
pressure and understand its contribution in drying shrink-
age within the framework of continuum mechanics. An ex-
pression of disjoining pressure is derived from the conserva-
tion of linear momentum – an approach that is unconven-
tional versus that found in historical references. The final,
derived expression is in complete agreement to the formu-
lations found in literature but provides valuable insights in
the context of drying shrinkage mechanisms of porous bod-
ies like concrete.

2. Understanding disjoining pressure
The concept of disjoining pressure was first introduced by
Derjaguin [Derjaguin and Kusakov, 1936, 1937], and his
approach to modeling the phenomena has been utilized
by numerous authors across myriad disciplines. The clas-
sical demonstration of disjoining pressure [Derjaguin and
Kusakov, 1936, 1937] is an experiment that involves two
parallel, atomically smooth plates in a liquid bath. The
two plates are brought ever closer together while the force
required to achieve a particular separation between the
plates is recorded. As the plates become very close to each
other, the force required to achieve the small separation
may become very high; this force, normalized by the cross-
sectional area of the plates, results in a ‘pressure’ that is
greater than that of the bulk solution comprising the bath.
The disjoining pressure for this type of problem is defined
by Derjaguin et al. [1987] as the difference between the
calculated pressure between the plates and that of the bulk
solution.

Disjoining pressure exists in other nanoscale problems
besides two solid surfaces separated by a thin layer of liq-
uid [Basu and Sharma, 1996, Hu and Sun, 2013, Mate, 1992,
Napari and Laaksonen, 2003, Sefiane, 2006]. As discussed by
Derjaguin in the 1930s [Derjaguin and Kusakov, 1936, 1939,
Derjaguin and Obukhov, 1936], a general definition of dis-
joining pressure in a thin liquid or gaseous interlayer is the
difference between the component of the anisotropic (i.e.,
non-spherical) stress tensor normal to the interlayer thick-
ness and the pressure in the bulk phase from which the in-
terlayer is formed. It is a vital parameter in spreading of a liq-
uid film on a solid surface and has important implications
in many engineering applications including surface modi-
fication, heat transfer, lubrication, emulsion, and oil recov-
ery [Basu and Sharma, 1996, Chatterjee et al., 2011, Chen-
gara et al., 2004, Churaev et al., 1994, Kuchin et al., 2014,
Langevin, 2000, Mate, 1992, Picano et al., 2001, Pushkarova
and Horn, 2005, Starov et al., 1994, Stubenrauch and Von Kl-
itzing, 2003].

In order to quantify the magnitude of the disjoining
pressure in the liquid between two surfaces in close prox-
imity, Derjaguin and Churaev [1978] used the approach of
LANDAU and LIFSHITZ [1984] whereby a total stress ten-
sor is quantified (i.e., the electrodynamic or electrostatic

body forces are reduced to forces applied to the surface of
a material volume, and then inserted directly into a single
stress tensor). This approach of utilizing a total stress tensor
arises out of the work of Maxwell [1954], whereby electric
and magnetic forces on point charges were converted to
continuous fields to formulate a conservation of linear mo-
mentum in terms of the divergence of the "Maxwell stress
tensor" rather than in terms of the Lorentz force. Thus, the
total stress tensor is the sum of the Cauchy (mechanical)
stress tensor and a fictitious electrostatic (or, more gener-
ally, electromagnetic) ‘stress’ tensor. Since the total stress
tensor is anisotropic due to the non-zero off-diagonal terms
originating from the electrostatic stress tensor, such an ap-
proach of using the total stress tensor may inadvertently
imply shear stresses are present in the interlayer liquid be-
tween two closely spaced surfaces. Liquids such as water are
generally modeled via constitutive equations that invoke
sphericity of the (Cauchy) stress tensor, and shear stresses
are disallowed unless the inertia is non-zero. One could
argue that the nature of water (and thus its constitutive
behavior) is different in tight spaces such that the mate-
rial behaves more solid-like and can sustain shear stresses
(see Gibbs [1878] ). However, disjoining forces have been
measured in aqueous solutions when the spacing between
the surfaces is relatively large (over 100 nm) compared to
the diameter of a water molecule (less than 0.5 nm) [Horn
et al., 1996, Pushkarova and Horn, 2005, 2008, Yaminsky
et al., 2010]. Furthermore, one could imagine a gravitational
field as being analogous to an electric field as both may be
expressed as a body force. As is well known, a gravitational
field does not induce shear stresses in static liquids, so why
should a local electric field?

In order to deal with this question, let us reconsider
the experiment first described by Derjaguin involving two
parallel plates being brought into close proximity in a liq-
uid bath as shown in Figure 1 and separate the Maxwell
stress tensor from the Cauchy stress tensor. Furthermore,
we use Lorentz (electrostatic) force vector instead of the
equivalent Maxwell stress tensor. By considering Derjaguin’s
experiment, we show that the theory is conceptually sound
when applied to the shrinkage of porous bodies. Further,
despite the argument that solid surface spacing does not
significantly change during the drying process of concrete,
the illustration presented below provides new insight in in-
terpreting the contribution of disjoining pressure in drying
shrinkage of cementitious materials. In such a problem, let
us first define a priori the Cauchy stress tensor (σ) of the

interlayer liquid to be spherical such that

σ≡
−p −π 0 0

0 −p −π 0
0 0 −p −π

 , (5)

where p is the pressure in the bulk liquid of the bath and
π is any additional mechanical (Cauchy) pressure that exists
within the interlayer liquid. The conservation of linear mo-
mentum may be expressed as

ρ
d v

d t
= div

[
σ

]
+ f , (6)
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Figure 1. Diagram showing Derjaguin’s experiment
where two parallel plates are brought together in a liq-
uid bath. A thin film of thickness h separates the two
plates and exhibits an excess pressure relative to the
bulk liquid.

where d
d t is the material time derivative, v is the material

velocity vector, ρ is the mass density, and f is the net body
force. We may use superposition to break the force down
such that f = f

e
+ f

other
(where f

e
is the body force due

to electric fields and f
other

refers to other body forces due

to fields – like gravity – other than the electric field) to find

ρ
d v

d t
= div

[
σ

]
+ f

e
+ f

other
. (7)

Based on the work of Coulomb on forces between
charged particles, along with the notion of superposition of
such forces and a suitable definition for the electrostatic(1)

field vector (E), one finds that the Lorentz force vector ( f
e

)

may be expressed by

f
e
= qe E , (8)

where qe is the charge density of the charged particles. If
inertia and f

other
are negligible, the conservation of linear

momentum takes the form of(2)

div
[
σ

]
=− f

e
=−qe E , (9)

where

qe =
∑
ζi eni , (10)

is the total charge of the system carrying i ions and ζi is
the valence of i th ion. Here, ni is the number density of ionic
species i , and e = 1.602×10−19C is the elementary protonic

(1)An electrodynamic, or time-varying electric field introduces an ad-
ditional linear momentum term and requires the inclusion of magnetody-
namic terms since the coupling between electrodynamics and magnetody-
namics means that they are always co-present. Here, we consider only an
electrostatic field for simplicity since it is sufficient to explain the critical
concepts.

(2)We assume that the liquid in the thin film retains the properties of
bulk liquid and is sufficiently far away from interfaces to neglect surface
forces. If one is interested in including surface forces, they can consider a
separate force vector and the presumption of the sphericity of the Cauchy
stress tensor is still valid.

charge. The Nernst equation, providing the Boltzmann dis-
tribution of ions and defining the relationship between the
ion number density and the electric potential, states that

ni = n0e−ζi e(ψ−ψ0)/kT , (11)

where n0 is the number density of ions in the bulk solu-
tion, ψ is scalar electric potential, ψ0 is the electrostatic po-
tential in the bulk solution, and k is the Boltzmann constant.
Equations 9 and 10 can be combined to give

div
[
σ

]
=−∑

ζi eni E . (12)

Conservation of linear momentum along the z direction
simplifies the preceding equation to

∂π

∂z
=−∑

ζi eni
∂ψ

∂z
. (13)

Now, if we take the differential of equation 11 with respect
to ψ we find

∂ni =−ζi e

kT
ni∂ψ. (14)

Thus, equation 13 can be expressed as

∂π

∂z
= kT

∑ ∂ni

∂z
. (15)

At this point, we make use of the classical demonstration
of disjoining pressure – the additional pressure on the sur-
face of the plates to keep the interlayer liquid in mechani-
cal equilibrium as the plates are brought close to each other,
as shown in Figure 1; we find the change in pressure at the
plate surface on bringing two plates together from infinity to
a separation, h, to be

(πh)z=h/2 − (π∞)z=∞/2 = kT
(∑(

nih

)
z=h/2 −

∑(
ni∞

)
z=∞/2

)
.

(16)
which is the well-known “contact-value-theorem.” Here,

the subscripts h and ∞ denote the plate separation, and
subscripts z = h/2 and z = ∞/2 denote the distance to the
plate surfaces from the midplane in the positive z direction.
By choosing ∞ as the reference state, since the disjoining
pressure on the plates is zero when the plates are apart, i.e.
(π∞)z=∞/2 = 0, we can ultimately write

(πh)z=h/2 = kT
(∑(

nih

)
z=h/2 −

∑(
ni∞

)
z=∞/2

)
. (17)

Thus, disjoining pressure due to the electrostatic effect
arises from the increase in the number density of ions at
the surfaces – more specifically the plate-solution contact
interfaces– when the plates are brought close to each other.
The right hand side of the above equation is a statement
of osmotic pressure attributed to the difference in the ion
number densities between the interlayer and the bulk liq-
uid. Therefore, disjoining pressure may be understood as
the mechanical, osmotic pressure at the surfaces required
to counteract the gradient of electric potential – i.e., the z
component of the electric field. The change in disjoining
pressure is repulsive when there is an overall increase in
the ion density at the surfaces due to the increased electro-
static effect compared to the bulk solution, and attractive
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when the ion density decreases as the plates are brought
together. Researchers have long recognized the osmotic
nature of the electrostatic repulsive force (see, e.g., [Coussy,
2010a, Derjaguin and Landau, 1941, Israelachvili, 2011]),
and Coussy [2010b] noted the equivalency between what
has been called disjoining pressure and osmotic pressure.
However, the derivation herein seems to be the first to show
the equivalence via the requirement for conservation of lin-
ear momentum. The ion density at the plate-liquid interface
can decrease due to the binding of counterions to surfaces
as plates are brought close to each other, especially in the
presence of high concentrations of divalent and trivalent
ions, which may even lead to complete neutralization and
charge reversal of surfaces [Israelachvili, 2011]. If one is to
consider the interaction of the charged particles with the
counterions in the solution, one can still do that within
the framework presented here. The derivation here can be
modified to account for the adsorption or binding of coun-
terions to the plate surface and the subsequent influence
on the electric potential and electric field at the contact
surface as the separation distance is reduced, allowing the
existence of the Stern layer with varying thickness and the
electric double layer (EDL). Quantification of the disjoining
pressure from equation 17 requires the determination of
ion number density as a function of the electrostatic poten-
tial at the plate surfaces. For a simplified case this can be
done by using the Poisson-Boltzmann (PB) equation for a
fixed surface charge density or surface potential. Let us now
express Coulomb’s law as

qe = εdiv[E ], (18)

where ε is the material permittivity, and apply E =
−grad [ ψ], to reproduce Poisson’s equation as

div[grad [ ψ]] =−qe

ε
. (19)

For a one-dimensional electric field in a monovalent 1:1
electrolyte solution between two plates, such as the one
shown in Figure 2, equation 17 simplifies to

(πh)z=h/2 =kT
((

n+h

)
z=h/2 +

(
n−h

)
z=h/2

)
−kT

((
n+∞

)
z=∞/2 +

(
n−∞

)
z=∞/2

)
,

(20)

and we can stipulate that the potential does not vary
along the x and y directions and, using equation 10, we
write the one dimensional PB equation in the Cartesian
coordinate system as

∂2ψ

∂z2 =−e

ε
(n+−n−) (21)

Upon integration of equation 21 for a constant surface
charge density, we find, with some mathematical manipu-
lation, that

kT
((

n+h

)
z=h/2 +

(
n−h

)
z=h/2

)
−kT

((
n+∞

)
z=∞/2 +

(
n−∞

)
z=∞/2

)
= kT

((
n+h

)
z=h/2 +

(
n−h

)
z=h/2 −2n0

)
.

(22)

The above relationship arises from the hypothesis that
the surface charge density, qs , remains constant, i.e., the
electric field at the contact surfaces is independent of the
separation distance, and no counterions are adsorbed to
the surfaces as the plates are pushed close to each other.
Such assumption allows us to neglect the effect of charge
regulation (i.e., counterion binding as plate separation de-
creases) and Stern layer on the electric field at the contact
surface. Note that this assumption is introduced here as a
boundary condition only to solve the PB equation. If one is
to consider surface charge densities as a function of plate
separation, they can still do it by introducing appropriate
governing equation and boundary conditions for the elec-
tric potential profile to account for the drop in the surface
potential due to ion binding. For instance, Ninham and
Parsegian [1971] described an approach of solving the PB
equation self-consistently for changing surface charge den-
sities or electrostatic potentials. When counterions do not
adsorb to the surfaces as the plates become close to each
other and the surface densities remain the same, osmotic
pressure at the surface is identical to that in the midplane.
In other words, the intensity of the electrostatic effects at
the surfaces in close proximity compared to that when the
plates are infinitely apart is equal to the intensity of the elec-
trostatic effects at the midplane. Substitution of equation 22
in equation 20 gives the disjoining pressure as

(πh)h/2 = kT
((

n+h

)
z=h/2 +

(
n−h

)
z=h/2 −2n0

)
. (23)

For two plates – with constant surface charge densities –
separated by a thin liquid layer containing monovalent ions
and counterions, disjoining pressure deduced here using
the conservation of linear momentum yields the same form
derived by Coussy [2010a] for the excess of internal pressure
to explain the swelling of clay particles in fresh or salty
water.

3. Validation and discussion
Equation 17 was evaluated by the osmotic pressure mea-
surements found in literature for charged bilayers in dilute
solution. In their experiment, Dubois et al. [1992] equi-
librated the pure lamellar didodecyldimethylamonium
bromide (DDAB)-water solution system at fixed osmotic
pressure and salt chemical potential with a large reservoir
containing dilute salt solution. The two solution systems
were separated by a dialysis membrane permeable to sol-
vent and ions. Chemical potential of the solvent in the reser-
voir was reduced by adding Dextran 500, a non-charged
hydrophilic polymer, and KBr, and the resulting swelling
was measured in terms of the interlamellar distances using
small-angle neutron scattering. The lamellar particles were
measured to bear a positive charge density of 0.235Cm−2,
equivalent to one charge per 0.68nm2 [Dubois et al., 1992].
Figure 3b plots the osmotic pressure measurements for
the DDAD-water system containing KBr concentrations of
c0 = 10−3M and in the bulk (reservoir) solution.

In order to validate the general derivation of the pre-
ceding section before extending the theory to concrete, the
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Figure 2. Distribution of co-ions and counterions
between two charged surfaces, with surface potential
of ψs and surface charge density of qs per unit surface
area, are (a) separated by a distance h and (b) infin-
itely apart from each other. n+ and n− are the num-
ber density (in units of m−3) of cations and anions,
respectively. n0 presents the number density of ions
in the bulk solution where the number of cations and
anions are the same due to overall charge neutrality.
Subscripts z = h/2 and z = ∞/2 represent the loca-
tion at the plate surface when they are h distance apart
and infinitely far apart, respectively; subscript z = 0 de-
notes the midplane.

lamellar particles from the experiments of Dubois et al.
[1992] were modeled as flat plates as shown in Figure 3a,
and the electrostatic potential, ψ, in the interlayer solution
was determined by solving the PB equation numerically
using the finite element method. The relative electrostatic
permittivity of the salt solution was 78.5 at 298 K and the
vacuum permittivity was 8.854 × 10−12C2J-1m-1 so that
ε = 78.5 × 8.854 × 10−12 = 6.947 × 10−10C2J-1m-1. The con-
centration c0 is related to the ion number density n0 by the
relationship n0 = NAc0, where NA = 6.022 × 1023mol−1 is
the Avogadro number. Further, we consider a Boltzmann
constant of k = 1.381×10−23JK-1 and T = 293K. Since, in the
bulk solution the ions are always paired up with counteri-
ons resulting in an overall charge neutrality, no electrostatic
effect occurs, and ψ0 ≈ 0.

Because the PB equation is highly nonlinear resulting
from the exponential dependence of ion density on the
electrostatic potential, obtaining the exact analytical so-
lution to this equation is not feasible. With the help of
Debye-Huckel linearization, problems for low potential
cases have been simplified for plate like particles to obtain
approximate analytical solutions [Derjaguin and Landau,
1993, Verwey, 1947]. For planar geometry, exact solutions
to the nonlinear PB equations also exist for symmetric
and asymmetric electrolyte solutions [Andrietti et al., 1976,
Chapman, 1913, Gouy, 1910, Grahame, 1953]. A few studies
have presented analytical solutions to describe electrostatic
potential between two similarly charged particles in terms
of complex integrals [Coussy, 2010a, Polat and Polat, 2010,
Saboorian-Jooybari and Chen, 2019, Zhang et al., 2018].
However, approximate solutions are generally only suffi-
ciently accurate for surface separations beyond about one
Debye length (please see [Israelachvili, 2011] for the defi-
nition and interpretation of Debye length), and one needs

to seek numerical solutions [Anandarajah and Chen, 1994,
Bohinc et al., 2016, Brumleve and Buck, 1978, Gross and
Osterle, 1968, Olivares and McQuarrie, 1975, Ramanathan,
1983] for problems with complex geometry and high surface
charge densities. For the problem in hand, the electrostatic
potential, ψ, is computed numerically using the Mathe-
matica function NDSolve with a discretized, finite element
representation of the plate geometry; the solution is first
obtained for dimensionless electric potential, ϕ = eψ

kT , and
then converted to the dimensional quantity.

The disjoining pressure was reproduced in Figure 3b
using equation 20 for bulk salt concentrations of 10−3M
and 10−2M, which is identical to the solution obtained from
equation 23, the osmotic pressure at the midplane. Disjoin-
ing pressure for the bulk concentration of 1.5 × 10−3M is
also shown as the membrane was reported to release Na+
ions at a mean concentration of 0.5×10−3M in the reservoir
[Dubois et al., 1992]. The simulated results were found to
be in very good agreement with the experimental measure-
ments. As the bulk salt concentration was increased, the
osmotic pressure in the liquid layer between the two plates
decreased due to the reduced electric field magnitude –
the negative gradient of the electric potential between the
thin layer and the bulk solution; as a result, the disjoining
pressure decreased.

Agreeable conclusions were also reached for the direct
measurements of osmotic pressure in electrolyte solutions
[Horn et al., 1988, Israelachvili and Adams, 1978]; between
lipid bilayers [Cowley et al., 1978]; between silica surfaces
[Ducker et al., 1991, Peschel et al., 1982]; and between mica
surfaces [Horn et al., 1988, Kjellander et al., 1990]. The re-
markably good agreement of the electrostatic forces with the
experimental results indicates that the dielectric constant
of water is close to the bulk value for surface separations
as low as 2 nm, and below about 8 nm the electrostatic
forces behave as if the surface charges are smeared out [Is-
raelachvili, 2011]. Otherwise, significant deviations would
have occurred, invalidating the treatment of the interlayer
system as continuum.

The proposed derivation of disjoining pressure due to
electrostatic forces can help explain the swelling of clay
sheets, micelles, bilayers or colloid particles in pure water
or dilute salt solutions down to below 10 nm. It does not
include the attractive van der Waals forces or other short
range surface forces. Measurements of forces between mica
surfaces in the range of 1 – 100 nm showed that the at-
tractive van der Waals forces are mostly active in the range
of 1 – 15 nm; at above 6.5 nm the retardation sets in; and
the attractive forces decay rapidly with increasing sepa-
rations [Israelachvili and Adams, 1978]. The same study
also reported the presence of an additional repulsive force
with a characteristic decay length of 0.95±0.20 nm. These
additional forces, further investigated by Pashley and his
colleagues [Kjellander et al., 1990, Pashley, 1981b, Pashley
and Quirk, 1984], are indeed very important for complex
colloidal and biological systems where these forces govern
the short-range interactions – below 6 nm, however can be
omitted for interactions at or above 10 nm.
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Further, this preceding formulation gives insight into the
effect of disjoining pressure in problems other than the ex-
ample (two parallel plates) examined herein. For instance,
Wasan and Nikolov [2003] reported an unexpected observa-
tion where the addition of electrolytes in the aqueous mi-
cellar solution, despite the reduction of the interfacial ten-
sion between the oil and aqueous solution that is believed to
stimulate the separation process, reduced the detachment
of the oil drop from the glass surface. Such a phenomenon
– observed at the same range of surface separations exam-
ined here – may be attributable to the reduction of the os-
motic pressure – of electrostatic origin – with the added elec-
trolytes, which diminishes the disjoining pressure and sub-
sequently the detachment of the drop.

It is important to recognize that the disjoining pres-
sure in the preceding example only changes when the
surface separation distance between the plates change. As
noted previously, since the pore sizes in drying concrete are
not anticipated to change significantly during the drying
process, there is effectively no change in the separation
distance between the solid particles. Does this mean that
disjoining pressure changes are not a mechanism contribut-
ing to concrete shrinkage? Second, what is the relevance of
the preceding analysis to concrete shrinkage? To answer
these questions, let us consider the morphology of cement
hydrates of a matured cement paste and its pore network.

4. Implications in drying shrinkage of
cementitious materials

When cement is mixed with water, anhydrous calcium and
silicate oxides react with water to form tricalcium silicate
solution. With the increased pH, this solution becomes su-
persaturated and forms nanoplatelets of C-S-H with typical
dimensions of 60 nm x 30 nm x 5 nm [Jönsson et al., 2004,
Labbez et al., 2006]. Jennings [2008] treats C-S-H as assem-
bly of “globules” of small brick like particles, which consist
of solid C-S-H with a cross-section thickness of 5 nm and
internal water. Muller et al. [2013] have used 1H relaxation
nuclear magnetic resonance (NMR) measurements to pic-
ture C-S-H morphology as a function of hydration degree
for a range of water to cement ratios of cement paste. The
experiments show that as the hydration progresses C-S-H
grows as a loose-packed assembly of nanocrystalline re-
gions. In these regions the calcium silicate layers are stacked
with interlayer water (∼ 1 nm in size) and are interspersed
with gel pores with a characteristic size of 3-5 nm that
remain relatively constant [Muller et al., 2013]. The NMR
data show that the gel porosity and the gel pore size reach
a plateau after 1-2 days of hydration, whereas the volume
of hydrates continuously grows. The interhydrate pores
containing the free water stabilizes at around 8-10 nm, and
these pores are not intrinsic to the C-S-H hydrates. The in-
terhydrate pores are comparable in size to the large globule
pores suggested by Jennings [2008]. The solid C-S-H density
without the gel pores decreases very slightly with the degree
of hydration. The bulk C-S-H density that includes the gel
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Figure 3. (a) Geometry and mesh for the finite ele-
ment analysis of the Poisson-Boltzmann (PB) model
for electrolyte solution between two planar charged
surfaces. (b) Disjoining pressure, namely the excess
of osmotic pressure at the plate surface separated
by solution which is in equilibrium with a bulk so-
lution containing ion concentrations of 10−3M and
10−2M. The circular and the square markers plot the
experimental results obtained by Dubois et al. [1992].
Dashed and dotted lines reproduce the disjoining
pressure obtained by equation 17 and solved for the
PB model for an 1:1 electrolyte solution.

water, on the other hand, increases markedly during hydra-
tion from around 1.8 g/cm3 at 1 day to 2.65 g/cm3 at 1 year.
Muller et al. [2013] suggested that the C-S-H aggregates of
layers are approximately 4.2 nm thick, which is close to the
globule size suggested by [Jennings, 2008].

These C-S-H particles become highly negatively charged
and are mainly counterbalanced by divalent calcium coun-
terions. The surface density of ionized sites is reported to be
in the range of 2.5−5 nm−2, with a surface charge density of
0.4−0.8 C/m2 [Jönsson et al., 2004]. For two C-S-H globules
separated by 2 nm, the concentration of the counter-ions
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confined in the vicinity of the surfaces is believed to be 2
M compared to the bulk concentration of 0.002 M [Jöns-
son et al., 2004]. As the hydrated cement paste is subject
to drying, the liquid saturation within the pore space de-
creases and the concentration of dissolved species in the
bulk pore liquid increases. Grasley and Leung [2011] con-
structed desorption isotherms for materials with varying
water to cement ratios (w/c) and age from the measured
mass loss data (see Figure 4b). This desorption isotherm can
be used to extrapolate bulk concentrations of the pore liq-
uid at decreasing liquid saturation levels during the drying
process.

For simulating the effect of disjoining pressure in drying
shrinkage of cementitious materials, we consider two C-S-
H aggregates with a stack thickness of 5 nm and width of
30 nm, as shown in Figure 4a, separated by 10 nm in a con-
tinuum characterized by a relative permittivity of 78.5. The
model adopted here is a simplistic view of C-S-H aggregates
and does not represent individual C-S-H particles packed
with interlayer and gel water. Simulation of complex C-S-H
structures where C-S-H particles are closely packed and are
separated by interlayer water and gel water, is still possible
under the framework of finite element analysis but is com-
putationally rather expensive. Moreover, if a range of pore
sizes from ∼ 1 to 10 nm are to be simulated representing in-
terlayer water, gel water, and interhydrate pores, short range
surface forces which have been excluded from our simula-
tion, can no longer be excluded. With the simplistic geom-
etry, the modeled results provide the general trend and ex-
tend Derjaguin’s concept of disjoining pressure to the con-
text of drying shrinkage of cementitious materials.

We presume the paste is fully matured so that the C-S-
H densification plateaus and there is no notable change in
the pore spacing due to the drying process, rather the pore
space is gradually invaded by the air filled with vapor. There-
fore, the simulated surface separation of the C-S-H aggre-
gates remains constant throughout the drying process. We
assume that the charge on the C-S-H aggregates is uniformly
smeared out with a density of 0.8 C/m2. The initial concen-
tration of the bulk solution is assumed to be 0.002 M for a
relative humidity of 100%, such that the matured cement
paste is fully saturated. This initial value of relative humidity
is also chosen as the reference state where the shrinkage is
considered “zero.” Thus, shrinkage stress due to the disjoin-
ing pressure mechanism is defined as the difference in the
disjoining pressure from the reference state to that at any
point with lower relative humidity. Ionic concentrations in
the bulk pore liquid with respect to varying relative humidity
are extrapolated from the desorption isotherm for hydrated
cement paste with w/c of 0.4 at the age of 7 days, as shown
in Figure 4b. Saturation values corresponding to relative hu-
midity lower than 25% have been obtained by hypothetically
extending the S-RH curve to 0, as shown by the solid line in
Figure 4b. The disjoining pressure is calculated for a series of
discrete concentrations, with each calculation performed at
steady state. Similar to the previous example, the disjoining
pressure at the C-S-H surface has been simulated for vary-
ing concentration of the bulk pore liquid by solving the PB

equation using a finite element model and presented in Fig-
ure 4c.

As the relative humidity decreases, the liquid water leaves
the pore solution increasing the concentration of counteri-
ons in the bulk solution. As a result, in the film separating
the C-S-H aggregates and the bulk solution, the gradient in
electrical potential in the direction perpendicular to the in-
terparticle gap decreases, decreasing the magnitude of the
repulsive disjoining force. In turn, this increases the mag-
nitude of the shrinkage stress. Thus, the contribution of dis-
joining pressure in drying shrinkage is osmotic in nature and
does not require changes in the interparticle gap.

Similarly, one can simulate the effect of water curing on
hydrated cement paste by considering the unsaturated or
partially saturated hydrated cement paste as the starting
point and slowly increasing the liquid saturation thereafter.
If one immerses a partially saturated hydrated cement paste
such that the liquid saturation of the specimen is about 0.4
for instance, into pure water, the water gradually invades
the empty dried pores. As the water penetrates the pore
network and water saturation increases to 1 (in this case
the x-axis in Figure 4c is reversed), the water dilutes the salt
in big pores, ultimately increasing the difference between
the salt concentration in the bulk liquid (in big pores) and
in the gap between the charged particles. The increased
gradient in electric potential perpendicular to the direction
of interparticle gap increases the disjoining pressure, and as
a result the hydrated cement paste expands when cured in
pure water.

Further, one can easily show that the magnitude of
shrinkage stress presented in Figure 4c is small compared
to the pressure calculated using the Lewis equation (equa-
tion 3), and capillary pressure plays the dominant role in
inducing shrinkage of cementitious materials even at very
low relative humidity. The relative contribution of these two
mechanisms may be quantitatively assessed by considering
the weighted average of the capillary pressure and disjoin-
ing pressure as outlined by El Tabbal et al. [2020] within the
framework of poromechanics [Coussy, 2010c].

It is necessary to recognize that the geometry in Figure
4a, which assumes a bulk solution surrounding the two sur-
faces in close proximity to each other, breaks down at low
saturation levels. This means that the predicted disjoining
pressures at low degrees of saturation are less reliable when
the ionic concentration is induced by drying. However, the
general trend of decreasing disjoining pressure (increasing
shrinkage stress) should yet hold. In addition, the modeled
geometry is essentially one dimensional because the plates
are long relative to the separation distance. In reality, the
electrostatic field is a vector and acts in three dimensions.
By combining equations 5, 9, and 21 one finds that, for a 2D
(x and z) Cartesian coordinate system,

∂π

∂z
= εEz

(
∂Ex

∂x
+ ∂Ez

∂z

)
. (24)

If the z direction is in line with the separation between
two surfaces (i.e., perpendicular to the two parallel sur-
faces), it is clear that the disjoining pressure is generally a
function of the electric field in the direction perpendicular
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and parallel to the surfaces (x direction). For surfaces that
approximate two parallel, infinite plates, the function sim-
plifies to ∂π= ε (Ez∂Ez ) and becomes one-dimensional (like
the lamellar particles of the previous example). However, for
surfaces that are not approximated by infinite plates (e.g.,
spherical or cubic particles), the term involving Ex does not
become zero. Furthermore, while Ez tends to vary only with
changing separation distance between the surfaces, for re-
alistic shaped particles of calcium-silicate-hydrate (C-S-H),
Ex may well vary due to changes in ionic concentrations of
the bulk liquid adjacent to the gap between the particles.
Thus, given the shape and structure of calcium-silicate-
hydrate particles in cementitious materials, it is necessary
to account for the geometry in simulations and not discount
the presence of the electrostatic field in directions other
than perpendicular to the gap between particles. Consider-
ations of C-S-H globules as 3D particles may yield different
values of disjoining pressure from that obtained here, how-
ever its contribution compared to the capillary pressure is
still anticipated to be small.

It should be noted here that simulated phenomenon
of disjoining pressure changes associated with changes in
bulk pore solution ionic concentration may also explain the
significance of the presence of dissolved species on disjoin-
ing pressure, as observed in several studies investigating
the disjoining pressure with surface apparatuses [Beltzung
and Wittmann, 2005, Churaev et al., 2000, Pashley, 1981a,b,
Peschel et al., 1982], and the swelling that occurs when
cementitious materials are placed in pure water or a true
100% RH environment (above the equilibrium RH dictated
by the water activity reduction of the pore solution due to
dissolved salts).

5. Conclusions
Capillary pressure and disjoining pressure are generally
believed to be the major driving force for drying induced
shrinkage in cementitious materials. However, the relative
contribution of the two mechanisms has been debated and
not fully understood. This paper investigates the mecha-
nism driving the disjoining pressure induced drying shrink-
age of concrete. A continuum based approach for quanti-
fying disjoining pressure in a thin liquid layer between two
charged planar surfaces in a liquid bath has been described.
This approach assumes that the thin liquid layer retains the
properties of the bulk solution and a priori the sphericity
of the Cauchy stress tensor of the interlayer liquid. Further,
this approach uses conservation of linear momentum to
derive disjoining pressure from the electrostatic Lorentz
force vector to show that disjoining pressure in a solution
between two solid surfaces is essentially the osmotic pres-
sure at the charged surfaces, which is in agreement with
historical references. The disjoining pressure offsets the lin-
ear momentum associated with the larger electric potential
gradient compared to that in the bulk solution to achieve
overall equilibrium. Simulations using the theory are in
good agreement with the experimental measurements of
osmotic pressure in the dilute solution of charged bilayers

[Dubois et al., 1992]. We show the shrinkage stress in con-
crete due to disjoining pressure, defined as the difference
between the disjoining pressure at the reference state with
full relative humidity and that at a low relative humidity, is
induced by the increased ionic concentration in the bulk
pore solution caused by the removal of water upon drying
and is osmotic in nature. In contrast to previous work on
modeling disjoining pressure in concrete, our approach
does not require significant changes to interparticle gaps
during the drying process. Instead, the recognition of elec-
trostatic field as a vector field where components of the
field in directions perpendicular to the gap between the
particles may contribute to disjoining pressure has led to a
new understanding of the mechanism.
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