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Abstract.
A very simple frictional plasticity model for a granular material is pre-

sented, including the effects of dilation. The novelty lies in the fact that
this is described within the hyperplasticity framework, expressed using
the terminology of convex analysis. This allows a consistent mathemati-
cal treatment of the dilation constraint. The Fenchel Dual is used to link
the force and flow potentials. The resulting model accommodates non-
associated flow within a rigorous mathematical framework that ensures
compliance with the Laws of Thermodynamics.
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1. Introduction
The language of engineering calculations is of course math-
ematics, and it is the Author’s experience that when the
appropriate branch of mathematics is applied to a partic-
ular class of engineering problems, it brings greater clarity
to those problems and can lead to new insights. Over the
last 50 years or more, plasticity theory has proven to be an
extremely useful mathematical framework within which
to describe the constitutive behaviour of soils. However,
plasticity theory can itself be expressed using a number of
different mathematical techniques. In some quarters the
terminology of “Convex Analysis” is used to express plas-
ticity theory, although this has yet to become widespread,
and the techniques of convex analysis are unfamiliar to
most practising geotechnical engineers. It is the Author’s
view, however, that the terminology of convex analysis is the
mathematical language that is most suitable for expressing
plasticity theory, and specifically the frictional plasticity
theories that need to be employed to describe soils. The
purpose of this paper is therefore to express a very simple
frictional plasticity theory using the language of convex
analysis. The model itself is not novel; it is the language that
is used to express it that is new. Convex analytical terminol-
ogy provides a concise and rigorous language to describe
a frictional plasticity model. These advantages mean that
this approach serves as a useful starting point for devel-
opment of more sophisticated models, or for establishing
(for instance) theorems about the behaviour of frictional
materials.

Convex analytical terminology that may be unfamiliar to
most readers is introduced as it is used, at a level of detail
that should be sufficient for those familiar with differential
calculus as applied in geotechnical engineering. For more
rigorous proofs of the definitions and results, see a standard
mathematical textbook such as Rockafellar [1970].

It is widely recognised that coarse-grained granular ma-
terials should be treated as “frictional” materials. The very
simplest model of a sand would be a material that is elastic
(or even rigid) within a certain range of stresses, and then
flows plastically when the stresses satisfy a simple frictional
criterion, usually specified by an angle of friction. For all but
the loosest of sands, plastic flow is accompanied by dilation.

While countless plasticity theories exist that describe the
above behaviour in broad terms, a fundamental problem
lies at the heart of most conventional plasticity theories
that embrace friction. For most non–frictional materials
(such as ductile metals) Drucker’s quasi-thermodynamic
“stability” criterion is adopted [Drucker, 1951, 1959], and
this leads directly to “associated flow”: that is to say the yield
surface and plastic potential are identical, i.e. the plastic
strain increment vector is normal to the yield surface when
plotted in terms of appropriate work-conjugate variables.
Frictional soils manifestly disobey this condition, as the
angle of dilation is invariably much less than the angle of
friction. So associated flow, and with it Drucker’s criterion,
must be rejected for frictional materials. Unfortunately,
this leads to a number of undesirable consequences, for
instance the loss of proof of the uniqueness of incremental

response. Furthermore, it is not in general possible to show
that frictional plasticity theories are consistent with the
Laws of Thermodynamics.

There is therefore a strong motivation to seek a way of
formulating frictional plasticity theory in a more rigorous
way, at the very least demonstrating that it is consistent with
thermodynamics. Hyperplasticity [Collins and Houlsby,
1997, Houlsby, 1981, Houlsby and Puzrin, 2000, 2006],
which implements the orthogonality principle of Ziegler
Ziegler [1977], offers such a possibility. The use of Ziegler’s
principle ensures that the models are consistent with ther-
modynamics and (unlike the case of Drucker’s criterion) it
proves possible to formulate realistic frictional models that
satisfy Ziegler’s principle. In brief Ziegler’s orthogonality
principle is a stronger statement than the Second Law of
Thermodynamics, so that materials which obey Ziegler’s
principle automatically satisfy the Second Law.

Use of Ziegler’s orthogonality leads to the important
result that the entire constitutive response of a material can
be specified through knowledge of just two scalar functions
– one that represents the stored energy, and one that speci-
fies how energy is dissipated. The constitutive behaviour is
then obtained by differentiation of these functions. There is
considerable freedom, however, in the choice of the func-
tions, as a series of Legendre Transforms can be used to
move between different functions, interchanging the role of
independent and dependent variables.

The Legendre Transform is defined as follows. We start
from a function X = X (xi ) which acts as a potential, such
that yi = ∂X /∂xi = X ′(xi ), which establishes a correspon-
dence between values of xi and the conjugate values of yi .
The purpose of the transform is to interchange the roles of
xi and yi . To do so it is necessary to establish the form of a
function Y = Y (yi ), which is achieved by first defining

Y = 〈yi , xi 〉−X

where the notation 〈yi , xi 〉 indicates the inner product be-
tween the variables; for vectors in n–dimensional space this
would simply be

〈yi , xi 〉 =
n∑

i=1
yi xi .

We then establish Y as a function of yi by the following
procedure. For sufficiently smooth functions, the relation-
ship yi = X ′(xi ) will be invertible, i.e. it can be written
xi = (X ′)−1(yi ) such that (X ′)−1

(
X ′(xi )

) = xi . We therefore
write

Y = 〈yi , xi 〉−X = 〈yi , (X ′)−1(yi )〉−X
(
(X ′)−1(yi )

)= Y (yi ).

It then follows that the conjugacy between points xi and yi

can equivalently be written as xi = ∂Y /∂yi . Indeed (once the
functional form of Y = Y (yi ) is known) the three statements
relating conjugate points

yi = ∂X

∂xi
xi = ∂Y

∂yi
X +Y = 〈yi , xi 〉

are mathematically equivalent [Moreau, 1974].
Thus, for example, a hyperelastic material (with no dissi-

pation) can be specified either by knowledge of the “strain
energy”, a function of the strains E = E(εi j ) such that σi j =
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∂E/∂εi j , or the “complementary energy”, a function of the
stresses C = C (σi j ) such that εi j = ∂C /∂σi j . The two are re-
lated by a Legendre Transform C +E = σi j εi j , and each can
be derived from the other. In the context of thermodynam-
ics, the strain energy can be identified with the Helmholtz
free energy f (εi j ,θ) at a constant temperature θ0, E(εi j ) =
f (εi j ,θ0), and the complementary energy can be similarly
identified with the (negative) Gibbs free energy at constant
temperature, C (σi j ) =−g (σi j ,θ0).

In hyperplasticity (as opposed to hyperelasticity) theory,
two scalar potentials are employed, an energy function
and the dissipation function. A Legendre Transform of the
dissipation function leads to definition of the yield function.
However, for rate–independent materials, the dissipation
is a homogeneous first order function of the plastic strain
rates, and as a result, derivation of its Legendre Transform
involves a degenerate special case for which ad hoc proce-
dures are necessary (see Appendix C of Houlsby and Puzrin
[2006]). The special case is better treated within the termi-
nology of convex analysis, in which the Legendre Transform
is generalised to the Fenchel Dual.

A further complication arises in the case of frictional
plasticity, in that the dilation is most straightforwardly im-
posed as a “constraint” on the plastic strain rates [Houlsby,
1992]. When implemented in a hyperplasticity formula-
tion in its simplest form, constraints are implemented by
the method of Lagrangian multipliers, resulting in an aug-
mented dissipation function that can then be differentiated
to give the (generalised) stresses. Any constraint on the
plastic strain rates must of course be consistent with the
requirement of dissipation of energy. In principle the yield
surface can be obtained by applying a Legendre Transform
to the augmented dissipation function, but again this can
be treated more consistently using convex analysis.

Convex analysis [Rockafellar, 1970] is a technique that
is very well developed in the area of optimisation, as well
as in several other fields. A small number of researchers
have adopted convex analytical terminology for plasticity
theory (see e.g. Han and Reddy [1999], Maugin [1992]),
but this approach has not yet become routine. However,
convex analysis terminology is ideally suited for plasticity
theory, and specifically for hyperplasticity. It is the natural
language to use to express plasticity theories in a consistent
and rigorous way, and a brief introduction in this context
is given in Appendix D of Houlsby and Puzrin [2006]. It
will be seen below that where constraints and Lagrangian
multipliers would be introduced in a more conventional ap-
proach, convex analysis makes use of “Indicator Functions”
(instead of constraints) and their “Normal Cones”, which
can be expressed through so–called Karush–Kuhn–Tucker
conditions. There is of course a close equivalence (indeed
isomorphism) between the two approaches, but the Author
believes that the convex analytical terminology is the more
versatile, and in particular allows the employment of the
Fenchel Dual, which is a generalisation of the Legendre
Transform.

The purpose of this paper is therefore to set out the
simplest of frictional–dilatant models in the terminology
of convex analysis, showing how this leads to a simple and

self–consistent mathematical framework, within which a
thermodynamically rigorous soil model can be expressed.
The simplicity of the model is emphasised: this is merely
the starting point for more realistic (and necessarily more
complex) models.

2. Analysis
We start by setting out hyperplasticity theory without re-
course to convex analysis. We choose just one version of
hyperplasticity in which we focus on the Gibbs free energy g
and the “force potential” z. The force potential is identical to
the dissipation d for the special case of rate–independence
which we consider here, but we use this terminology for
consistency with the more general rate–dependent case. It
is related to the dissipation d through the relationship

d = ∂z

∂α̇
α̇

(see Houlsby and Puzrin [2006], Ch. 11). Other formulations
are possible using different potentials, which are Legendre
Transforms of these. The Gibbs free energy g = g (σ,α) is
a function of the stresses σ and some kinematic “internal
variables” α, which in the following will be seen to play ex-
actly the same role as plastic strains. The force potential z =
z(σ,α, α̇) is a function of the stresses, internal variables and
the rates of the internal variables. Since the force potential
for a rate–independent material is identical to the dissipa-
tion, which must be non–negative, we require the functional
form of z to satisfy z(σ,α, α̇) > 0. For the more general rate–
dependent case we require d = (∂z/∂α̇)α̇> 0.

It can then be shown from the First and Second Laws
of Thermodynamics (see for instance Houlsby and Puzrin
[2006]) that:

ε=−∂g

∂σ
(1)

0 =
(
∂g

∂α
+ ∂z

∂α̇

)
α̇ (2)

One way of expressing Ziegler’s orthogonality principle is to
replace (2) by the stronger statement:

0 = ∂g

∂α
+ ∂z

∂α̇
(3)

Any material which obeys (3) therefore also obeys (2) and
thus satisfies the Laws of Thermodynamics. Ziegler’s orthog-
onality principle can be expressed in a variety of different
ways, but it can be understood as the concept that whilst
the Second Law requires the dissipation to be non–negative,
Ziegler’s principle states that, subject to any relevant con-
straints, dissipation is maximal.

In practice it is convenient to rewrite (3) by defining a
pair of new variables, χ and χ̄, both called the “generalised
stress”, and defined by:

χ̄=−∂g

∂α
(4)

χ= ∂z

∂α̇
(5)

and impose the side condition χ = χ̄, which is in effect
Ziegler’s orthogonality condition. Although the two new
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variables are always equal, it is necessary to treat them
separately for some formal mathematical purposes.

The above approach is satisfactory when g and z are
differentiable (C 1 continuous). However, when they are not,
and in the special case when z is homogeneous first order in
the rates, it is convenient to use the terminology of convex
analysis and introduce the subdifferential (essentially a gen-
eralisation of the derivative for the case of convex functions
that are not C 1 continuous).

At this stage it is necessary to introduce some of the
essential language of convex analysis. A real–valued func-
tion y = f (x), that may take values on the extended line
[−∞,+∞], is convex if

f
(
(1−λ)x1 +λx2

)
6 (1−λ) f (x1)+λ f (x2) , ∀ 06λ6 1

The notation ∀ 0 6 λ6 1 means “for all λ between 0 and 1”.
This concept is illustrated for a function of one variable in
Fig. 1, in which the inequality states that point Q lies above
(or at least not below) point P. This corresponds to the con-
ventional notion of convexity.

Figure 1. A convex function of one variable.

The derivative f ′(x) is familiar as the slope of a tangent to
a curve y = f (x). For convex functions that are continuous
but non–smooth (i.e. C 0 but not C 1 continuous) the concept
can be extended to the concept of a subdifferential. First of
all, for a function of one variable, a subgradient is defined as
the slope x∗ of any line that touches a curve at x1 but does
not pass above it, i.e. such that

x∗(x2 −x1)6 f (x2)− f (x1) , ∀x2

see Fig. 2.
The subdifferential ∂ f (x) is then defined as the set of all

subgradients at a given point on the curve. For the function
of one variable illustrated in Fig. 3 the definition is

∂ f (x1) =
{

x∗
∣∣∣ x∗(x2 −x1)6 f (x2)− f (x1), ∀x2

}
,

where the notation {a | b} means “the set of all values of a
that satisfy condition b”. For the more general case this is

Figure 2. Subgradient of a function of one variable.

written

∂ f (x1) =
{

x∗ ∈V ′
∣∣∣ 〈x∗, (x2 −x1)〉6 f (x2)− f (x1), ∀x2

}
,

where x is a member of the vector space V and x∗ a member
of the dual space V ′ under the inner product 〈x∗, x〉. Noting
that the subdifferential is a set that consists of all possible
values of the subgradient at a particular point; at any point
x1 where the function is smooth (C 1 continuous) the set is a
“singleton” that contains just one value which is identical to
the conventional derivative ∂ f (x1) = {

f ′(x1)
}
.

Figure 3. Subdifferential of a function of one variable.

Where f (x, y) is a function of more than one variable we
use the notation ∂x f to denote the subdifferential of f with
respect to x.

In convex analytical notation equations (1), (4) and (5)
now become:

ε ∈ ∂σ(−g ) (6)

χ̄ ∈−∂αg (7)

χ ∈ ∂α̇z (8)

Open Geomechanics, 2019, article no. 3
Guy T. Houlsby, Frictional Plasticity in a Convex Analytical Setting 4



together with χ= χ̄ as before. The notation x ∈ S means “x is
a member of the set S”. The positions of the minus signs in
(6) and (7) are important: in general −g is convex in σ and g
is convex in α.

2.1. Frictional plasticity
We now express a very simple frictional plasticity theory

using the above approach. We shall use the Cambridge tri-
axial effective stress parameters (p ′, q), but to emphasise the
connection with the notation already introduced we shall
call these (σp ,σq ). The corresponding strains are (εp ,εq ),
the internal variables (plastic strains) are (αp ,αq ) and the
generalised stresses (χp ,χq ), (χ̄p , χ̄q ). Note that we use the
compressive positive convention usual in geomechanics.
The stress σp is equal to the mean effective stress (i.e. σi i /3
in tensorial subscript notation) and σq is the deviatoric
stress, for the special case of triaxial stress states considered
here. More generally it is equal to

σq =
√

3

2
si j si j si j =σi j − 1

3
σkkδi j

We specify the Gibbs free energy:

g =−
σ2

p

2K
−
σ2

q

6G
−σpαp −σqαq (9)

We could alternatively have specified the Helmholtz free en-
ergy, the Legendre Transform of the Gibbs free energy, as

f = K

2

(
εp −αp

)2 + 3G

2

(
εq −αq

)2

but we do not pursue that alternative here.
As g is in fact C 1 continuous, the subdifferential at any

point would be a singleton, and equations (6) and (7) reduce
to (1) and (4) so we can write:

εp =− ∂g

∂σp
= σp

K
+αp (10)

εq =− ∂g

∂σq
= σq

3G
+αq (11)

χ̄p =− ∂g

∂αp
=σp (12)

χ̄q =− ∂g

∂αq
=σq (13)

We can therefore deduce that for this particular model:

a) the internal variables (αp ,αq ) play the role of plas-
tic strains, as they are simply additive terms to the
elastic strains (σp /K ,σq /3G), and

b) the generalised stresses (χp ,χq ), (χ̄p , χ̄q ) are equal
to the true stresses (σp ,σq ). This will be true for
many models, hence the terminology “generalised
stress”, although for some formal mathematical
purposes σ, χ and χ̄ need to be treated separately.
In some models that employ a “back–stress” the
generalised stress differs from the true stress, but
such models are not pursued here. Kinematic hard-
ening models that employ a back–stress involve
additional energy terms in the Gibbs free energy
(sometimes termed “frozen energy”).

We now turn to the force potential, which we must treat us-
ing convex analysis as it is not C 1 continuous. For the fric-
tional model we write the force potential as:

z = Mσp
∣∣α̇p

∣∣+ I[−∞;0]
(
α̇p +N

∣∣α̇q
∣∣) (14)

The term Mσp
∣∣α̇p

∣∣ simply represents a frictional dissipa-
tion – a dissipation proportional to the normal stress and
the plastic shear strain rate. The notation IC (x) describes the
Indicator Function(1) (also sometimes called the Character-
istic Function) of the convex set C . The indicator function is
defined by

IC (x) =
{

0 x ∈C ;

+∞ x ∉C .

It is therefore a rather curious function which takes the value
zero if x is a member of the set C and is infinite otherwise.
The use of this indicator function effectively imposes the
constraint that its argument α̇p +N

∣∣α̇q
∣∣ is a member of the

set with range [−∞;0], in other words it is non–positive.
Effectively this is the dilation constraint, so that plastic
shearing is always accompanied by volumetric expansion,
in proportion to the shear strain as specified by the factor
N , as is commonly observed for dense granular materials.
Note, however, the important feature that a unilateral con-
straint α̇p + N

∣∣α̇q
∣∣ 6 0 is imposed rather than an equality

constraint α̇p +N
∣∣α̇q

∣∣ = 0. It later follows that this allows a
consistent treatment of the behaviour at zero stress. It will
be seen that the combination of the two terms in Equation
(14) results in a response in which the apparent frictional
strength is made up from two terms, a frictional dissipation
expressed through the factor M and an additional compo-
nent due to dilation and defined by the factor N . Such a
concept has been familiar since the work of Taylor [1948].

The subdifferential of the indicator function IC (x) of a
convex set C is a set called the Normal Cone NC (x), and it
can be shown from the general definition of the subdiffer-
ential that the normal cone is defined by

NC (x) = ∂IC (x) =
{

x∗
∣∣∣ 〈x∗, (y −x)〉6 0, ∀y ∈C

}
.

Furthermore, for the special case where C = [−∞;0], and
therefore the indicator function is just a function of one vari-
able, any memberΛ of the Normal Cone at x,Λ ∈N[−∞;0](x),
satisfies the conditions: 

Λx = 0

x 6 0

Λ> 0

(15)

which are sometimes called the Karush–Kuhn–Tucker (KKT)
conditions. Although these properly belong to a slightly
different context, we use this terminology here. Exploiting
Theorem 3.7 of Romano [1995](2), which is analogous to the

(1)Confusingly, in other mathematical contexts both the terms Indicator
Function and Characteristic Function have been defined in other ways.

(2)The theorem is briefly stated as follows. Let m :R∪ {+∞} 7→R∪ {+∞}
be a monotone convex function with m(+∞) =+∞ and k : X 7→R∪{+∞} be
a proper convex functional continuous at x ∈ X . Then, if x is not a minimum
point of k and m is subdifferentiable at k(x), setting f = m ◦ k results in
∂ f (x) = ∂m[k(x)]∂k(x).
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chain rule of conventional differential calculus, it follows
that:

(χp ,χq ) ∈ ∂z(α̇p , α̇q )

=
{(
Λ, MσpΣ1 +ΛNΣ2

) ∣∣∣
Λ ∈N[−∞;0]

(
α̇p +N

∣∣α̇q
∣∣) ,

Σ1,Σ2 ∈ S(α̇q )
}

(16)

where we define a signum function:

S(x) =


{−1} x < 0

[−1;+1] x = 0

{+1} x > 0.

It is necessary to use this (set valued) function rather than
the conventionally defined signum function

sgn(x) =


−1 x < 0

0 x = 0

+1 x > 0

in order to describe the subdifferential correctly at x = 0.
Note specifically that a member of S(x) takes an indetermi-
nate value at x = 0. It follows that although Σ1 ∈ S(α̇q ) and
Σ2 ∈ S(α̇q ) there is no a priori reason to assume Σ1 = Σ2.
However, note that for all values of α̇q and any positive mul-
tipliers A and B it is always possible to write

AΣ1 +B Σ2 ∈ (A+B)S(α̇q ),

This means we can simplify equation (16) to:

(χp ,χq ) ∈
{(
Λ,

(
Mσp +ΛN

)
Σ

) ∣∣∣
Λ ∈N[−∞;0]

(
α̇p +N

∣∣α̇q
∣∣) , Σ ∈ S(α̇q )

}
(17)

Furthermore, Λ in equation (17) satisfies the KKT condi-
tions: 

Λ
(
α̇p +N

∣∣α̇q
∣∣)= 0

α̇p +N
∣∣α̇q

∣∣6 0

Λ> 0

(18)

2.2. Fenchel dual
Very importantly, it is possible to interchange the roles of

independent and dependent variables by use of a Fenchel
Dual, which is the convex analytical generalization of the Le-
gendre Transform. The Fenchel Dual is defined as follows.
We start from a convex function f (x) which acts as a po-
tential, such that x∗ ∈ ∂ f (x), which establishes a correspon-
dence between values of x and the conjugate values of x∗.
The dual interchanges the roles of x and x∗. To do so it is
necessary to establish the form of the dual function f ∗(x∗),
which is defined as

f ∗(x∗) = sup
x

(〈x∗, x〉− f (x)
)

where 〈x∗, x〉 denotes the inner product. It then follows that
the conjugacy between points x and x∗ can equivalently be
written as x ∈ ∂ f ∗(x∗). Indeed (once the functional form of
f ∗(x∗) is known) the three statements relating conjugate
points:

x∗ ∈ ∂ f (x) x ∈ ∂ f ∗(x∗) f (x)+ f ∗(x∗) = 〈x∗, x〉

are mathematically equivalent [Moreau, 1974]. The dual of
the dual is the original function: f ∗∗(x) = f (x). It can read-
ily be proven that for smooth (C 1 continuous) functions the
Fenchel Dual reduces to the Legendre Transform.

Although the constitutive behaviour can be derived en-
tirely from the force potential z , it is more convenient in
some applications to use the flow potential w , which is
closely related to the conventional yield surface. The two
potentials are not independent, but related as Fenchel Du-
als. Applying the above definition we therefore seek the dual
to z , defined by:

w(χp ,χq ) = sup
(α̇p ,α̇q )

{
χp α̇p +χq α̇q − z(α̇p , α̇q )

}
= sup

(α̇p ,α̇q )

{
χp α̇p +χq α̇q

− [
Mσp

∣∣α̇q
∣∣+ I[−∞;0]

(
α̇p +N

∣∣α̇q
∣∣)]} (19)

It can be shown (see Appendix) that:

w(χp ,χq ) = I[−∞;0]
(∣∣χq

∣∣−Nχp −Mσp
)+ I[−∞;0]

(−χp
)

(20)

It follows, from the fact that w is the Fenchel Dual of z, that
α̇ ∈ ∂w and

(α̇p , α̇q ) ∈ ∂w(χp ,χq )

= (−N ,S(χq )
)
N[−∞;0]

(∣∣χq
∣∣−Nχp −Mσp

)
+ (−1,0)N[−∞;0]

(−χp
)

= {(−λ1N −λ2,λ1S(χq )
)}

(21)

where λ1, λ2 satisfy the KKT conditions:
λ1

(∣∣χq
∣∣−Nχp −Mσp

)= 0∣∣χq
∣∣−Nχp −Mσp 6 0

λ1 > 0

(22)


λ2

(−χp
)= 0

−χp 6 0

λ2 > 0

(23)

It can immediately be seen that if χp > 0 (in which case λ2 =
0) the plastic strains satisfy the dilation constraint, and that
w expresses both the yield function (in generalized stress
space) and the plastic potential of conventional plasticity
theory in a compact form. Note specifically that it is the par-
tition between the terms Mσp and Nχp in the first indica-
tor function of w that defines the frictional and dilational
components of strength. Although in this particular model
σp and χp are always numerically equal, σp simply serves
as a parameter in equation (20).

The relationships between the force potential z and the
flow potential w are illustrated in Fig. 4. On the left the
force potential z is illustrated in Fig. 4(a). The domain of z
is shaded, and within this domain z = Mσp

∣∣α̇q
∣∣. Outside

the shaded region z = +∞, indicating unattainable values
of (α̇p , α̇q ). On the right the flow potential w is illustrated
in Fig. 4(b). The domain of w is shaded, and within this do-
main w = 0. Outside the shaded region w = +∞, indicating
unattainable values of (χp ,χq ).

Open Geomechanics, 2019, article no. 3
Guy T. Houlsby, Frictional Plasticity in a Convex Analytical Setting 6



Figure 4. Relationships between the force potential
z and the flow potential w : a) domain of z in ( .

αp , .
αq)

plastic strain rate space; b) domain of w in (χp ,χq)
generalised stress space.

Any points on the lines A and A’ marked in Figs. 4(a) and
4(b) are conjugate points (i.e., they represent correspond-
ing pairs of values (α̇p , α̇q ) and (χp ,χq )). Importantly, this
mapping is many–to–many: each point on A is conjugate to
any point on A’ and vice versa. A similar observation is made
with respect to the lines E and E’. These lines represent
regular shearing, accompanied by dilation, in the positive
(A and A’) and negative (E and E’) directions. The entire
shaded region B in Fig. 4(a) is conjugate to the corner B’ of
the shaded region in Fig. 4(b): this state only occurs when
χp = 0, and for the model considered there are side con-
ditions (imposed by the functional form of g ) that require
σp = χp , so this only occurs when in fact all the stresses
are zero. At this point the plastic strain rates become in-
determinate, although constrained in direction. A similar
discussion applies to the region D conjugate to point D’. The
line C (α̇p < 0, α̇q = 0) is conjugate to the line segment C’,
but note again that because of the side condition σp = χp

this segment collapses to a single point. Finally the apex F of
the shaded region at the origin in Fig. 4(a) is conjugate to the
entire shaded region F’ in Fig. 4(b): this represents elastic
behaviour for which the yield condition is not satisfied and
all plastic strain rates are zero.

Finally we can evaluate the dissipation d = 〈χ, α̇〉 = z +w ,
and we obtain d = Mσp

∣∣α̇q
∣∣ as the indicator functions eval-

uate to zero within the effective domains of the variables.

2.3. Interpretation in stress space
We now turn to an interpretation of the above results in

true stress space, which is of course more familiar to most
readers. The form of equation (20) requires that∣∣χq

∣∣−Nχp −Mσp 6 0 and χp > 0.

Noting (12) and (13) and orthogonality, the functional form
of g allows us to identify that χp = σp and χq = σq , so that
these conditions can be rewritten as∣∣σq

∣∣−Nσp −Mσp 6 0 and σp > 0.

However, note that any set of stresses that obeys the first
condition automatically obeys the second, so that the do-
main of accessible stresses is given by:

f (σ) = ∣∣σq
∣∣−Nσp −Mσp 6 0 (24)

where f (σ) is the yield function in (true) stress space.
Whilst the strength is defined by the ratio∣∣σq

∣∣/σp = M +N

the dilation rate is defined by the ratio −α̇p /
∣∣α̇q

∣∣ = N , and
clearly the model exhibits “non–associated” flow in true
stress space, with (in loose terms) the apparent coefficient
of friction M +N being the sum of a constant volume coeffi-
cient of friction M and a coefficient of dilation N . The yield
surface and plastic strain increment vectors are illustrated
in Fig. 5, with yield in the positive and negative directions
on lines A’, E’ (the lettering corresponds to the equivalent on
Fig. 4(b)) and the dark blue arrows indicating the direction
of the plastic strain vectors. Note that at the origin B’C’D’
the second of the KKT conditions in (18) ensures that the
plastic strain increment vectors fall within the fan of arrows
illustrated. The pale blue shaded region F’ represents elastic
states within the yield surface.

Figure 5. Yield function and plastic strain increment
vectors in true stress space.

Alternatively the equation

y = ∣∣χq
∣∣−Nχp −Mσp = 0

can be understood as defining a family of yield functions in
generalized stress (χp ,χq space, parameterized by the true
stress σp . These surfaces are those shown on Fig. 4(b) as A’
and E’. The “normality” relationships α̇ ∈λ∂y are true in this
generalized stress space, but not in true stress space.
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3. Discussion
3.1. Comparison with critical state models

The dissipation expression d = Mσp
∣∣α̇q

∣∣ is of course the
same as the plastic work rate expression Ẇp = Mσp

∣∣α̇q
∣∣

adopted in the original Cam Clay model [Schofield and
Wroth, 1968], where Ẇp = σp α̇p +σq α̇q is the plastic work
rate. It was implicit in the original Cam Clay model that
the plastic work Ẇp was the same as the dissipation rate d ,
although it had been noted by Palmer [1967] that this was
not necessarily the case, a point discussed in more detail by
Collins and Houlsby [1997]: the two are only the same if the
true stress and generalized stress are equal. Importantly, the
Cam Clay model was developed on the basis that the “flow
rule” implied by the plastic work rate expression could be
converted to a plastic potential, and then Drucker’s normal-
ity invoked to deduce the shape of the yield surface. It is the
Author’s view that the combination of frictional dissipation
with Drucker’s normality is inconsistent with a rigorous
thermodynamic formulation of plasticity theory.

The above observation immediately raises the issue
that, if such an approach is inconsistent theoretically, why
does the original Cam Clay model represent the yielding of
clays with some success, and the Modified Cam Clay model
[Roscoe and Burland, 1968], which is based on an alternative

frictional plastic work rate Ẇp = σp

√
α̇2

p +M 2α̇2
q , arguably

represent soft clay behaviour even better?
Houlsby [1981] showed that Modified Cam Clay can be

derived within the hyperplasticity approach by assuming
that the dissipation is proportional to the preconsoli-
dation pressure rather than the mean effective stress:

d = (pc /2)
√
α̇2

p +M 2α̇2
q . This result points to a fundamental

difference between the behaviour of clays, with dissipation
proportional to preconsolidation pressure (“cohesive ma-
terials”, or perhaps better “pseudo–frictional materials”),
and coarse granular soils, with dissipation proportional to
pressure (“frictional materials”). Collins and Kelly [2002]
explore, using a slightly different terminology, transitions
between these two extremes.

3.2. Incremental stress–strain response
The model described in this paper is perhaps the very

simplest idealization of the behaviour of a dense sand or
other frictional material. It is defined completely by the two
expressions:

g =−
σ2

p

2K
−
σ2

q

6G
−σpαp −σqαq (25)

w(χp ,χq ) = I[−∞;0]
(∣∣χq

∣∣−Nχp −Mσp
)+ I[−∞;0]

(−χp
)

(26)

The derivation of the incremental response is as follows.
First we note equations (9) and (10) in incremental form:

ε̇p = σ̇p

K
+ α̇p and ε̇q = σ̇q

3G
+ α̇q .

We then note that equation (21), once we make use of χp =
σp , gives (

α̇p , α̇q
)= (−λN ,λS(χq )

)
,

with the KKT conditions noted in equation (22). These re-
quire that if

∣∣χq
∣∣−Nχp −Mσp < 0 then λ= 0 and trivially we

obtain

ε̇p = σ̇p

K
and ε̇q = σ̇q

3G

(elastic behaviour). If on the other hand
∣∣χq

∣∣−Nχp −Mσp =
0 then λ> 0 and

ε̇p = σ̇p

K
−λN and ε̇q = σ̇q

3G
+λS(χq ).

The plastic multiplier λ of course remains undetermined in
this perfectly plastic model. However, during plastic defor-
mation the (generalized) stress point must remain on the
yield surface, so we deduce from

∣∣χq
∣∣−Nχp −Mσp = 0 the

incremental continuity condition∣∣χ̇q
∣∣−N χ̇p −Mσ̇p = 0.

In view of equations (11) and (12) which give σ = χ and our
fundamental assumption (Ziegler’s orthogonality condition)
χ= χ̄, it follows that the continuity condition requires that∣∣σ̇q

∣∣− (M +N )σ̇p = 0.

This completes the incremental stress-strain relationship.
In the above very simple model the distinction between

generalized stresses and true stresses may seem superflu-
ous, but in more complex models, e.g., those that involve
kinematic hardening, the two quantities are not the same
(they differ by the “back stress”) and the distinction is es-
sential.

Equations (25) and (26) serve to provide an extremely
compact mathematical description of a model that embod-
ies linear elasticity, and yield defined by a purely frictional
criterion accompanied by dilation. Crucially, it involves an
angle of dilation (related to the factor N ) lower than the an-
gle of friction (related to the factor M), i.e. non–associated
flow conditions, within a theoretical framework that guar-
antees compliance with the Laws of Thermodynamics. Such
a model is not new, and it bears only superficial comparison
with the behaviour of real sands, but it can serve as the basis
for more complex models. For instance, a more realistic
model would need to include non–linear elasticity (see
for instance Houlsby et al. [2005] for a suitable approach
employing hyperelasticity), as well as a dependence of the
dilation rate on the density (as addressed for instance by
Houlsby [1992]).

The purpose of this paper has, however, not been to de-
scribe a sophisticated model, but to introduce the terminol-
ogy of Convex Analysis for the description of frictional ma-
terials, with a view to using that language for more advanced
constitutive modelling.

4. Conclusion
Frictional plasticity, including dilation, has been defined
within the mathematical framework of Convex Analysis,
allowing a rigorous mathematical treatment that defines
elastic and plastic behaviour, including dilation and non–
associated flow. The Laws of Thermodynamics are embod-
ied in the hyperplasticity approach that is used. Fenchel
Duals are used to interchange the roles of dependent and
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independent variables. Whilst the convex analytical termi-
nology used here may be unfamiliar to many readers, it is
suggested that it has advantages as the natural mathemati-
cal language for expressing plasticity theories.
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Appendix: Derivation of Equation (20)
We seek the Fenchel Dual of the force potential given in
Equation (14):

z(α̇p , α̇q ) = Mσp
∣∣α̇q

∣∣+ I[−∞;0]
(
α̇p +N

∣∣α̇q
∣∣)

The dual is defined as:

z∗
1 (χp ,χq ) = sup

(α̇p ,α̇q )

{
χp α̇p +χq α̇q −Mσp

∣∣α̇q
∣∣

− I[−∞;0]
(
α̇p +N

∣∣α̇q
∣∣)}

Which by virtue of the indicator function becomes:

z∗
1 (χp ,χq ) = sup

(α̇p ,α̇q )
α̇p+N |α̇q |60

{
χp α̇p + χq α̇q − Mσp

∣∣α̇q
∣∣}

We now consider the value of the supremum. We first ob-
serve that if χp < 0 then the values α̇p = −∞, α̇q = 0 result
in the supremum equal to +∞. Considering the case when
χp > 0, the first term in the supremum is maximized when
α̇p takes its maximum allowable value, which is −N

∣∣α̇q
∣∣. We

can also observe that the second term is maximized (without
affecting the value of the third term) when χq has the same
sign as α̇q rather than the opposite, so this term could be
written as

∣∣χq
∣∣ ∣∣α̇q

∣∣. The supremum can therefore be rewrit-
ten in the form

sup
α̇q

{(∣∣χq
∣∣−Nχp −Mσp

)∣∣α̇q
∣∣}.

Clearly this takes the value zero if
∣∣χq

∣∣− Nχp − Mσp 6 0
and +∞ if

∣∣χq
∣∣−Nχp −Mσp > 0. We can therefore identify

z∗
1 (χp ,χq ) as the indicator function of the set

X (χp ,χq ) =
{

(χp ,χq )
∣∣∣χp > 0,

(∣∣χq
∣∣−Nχp −Mσp

)
6 0

}
,

and we can therefore write:

z∗(χp ,χq ) = I[−∞;0]
(∣∣χq

∣∣−Nχp −Mσp
)+ I[−∞;0]

(−χp
)
.
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Notation
C Complementary energy
d Dissipation
f (1) Helmholtz free energy; (2) yield function in true stress space
g Gibbs free energy
E Strain energy
G Shear modulus
IC (x) Indicator Function of a set C
K Bulk modulus
M Friction constant
N Dilation constant
NC (x) Normal Cone of a set C
S(x) Generalised Signum Function
p, q Subscripts associating variable with Cambridge triaxial parameters
pc Preconsolidation pressure
w Flow potential
Ẇp Plastic work rate
y Yield function in generalised stress space
z Force potential
α Internal variable (in this paper equal to plastic strain)
ε Strain
λ,Λ Factors in KKT conditions
σ Stress
χ, χ̄ Generalised stress
∂ f (x) Subdifferential
〈x∗, x〉 Inner product
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